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I. INTRODUCTION

The ability of a monopulse processor to determine the angular direction of

an incident signal is limited not only by the inherent frcnt-end receiver noise

but also by the effect of interfering signals. If there are other time coincident

signals present that interfere with the signal whose direction is to be estimated

then McAulay 11] has shown that bias effects occur that can seriously degrade the

quality of the estimate. It becomes important therefore, to know when such interference

is present so that low confidence can be assigned to the assiciated azimuth estimate.

Sherman [2] has observed that when interfering signals are present the out-

puts of the monopulse sum and difference beams become incoherent. He proposes

to use the quadrature information to resolve the target and interference signals.

Our approach is to dehvelop an interference flag that indicates when more than

one signal is present in iie receiver channels. Depending on the application,

the flag would be used to assign a low confidence to tne associated angle esti-

mates or to delete the angle estimate altogether. In Section II, we form,.ate

the test for interference as a hypothesis test. Using the Generalized Likelihood

Ratio test [3] and following the analysis of Hofstetter and DeLong [4], we

obtain the optimum interference detection statistic.

The performance of the detector is analyzed in Section III where it is first

shown that the interference statistic has the Rician distribution. Exact evalu-

ation of the false alarm and detection probabilities becomes intractable and

use is made of the Gaussian approximation to the Rician variate. Numericalii '



'results for some typical cases of interest are given and it is shown that the

results depend strongly on the relative phase between the target and interfering

signals, but that good overall performance can be obtained. Conditions under

which the Gaussian approximation is valid are given and are shown to hold for

the cases studied.
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II. PROBLEM FORMULATION AND SOLUTION

We shall restrict our attention to amplitude-comparison monopulse processing

that is performed on a sampled-data basis. Assuming mixer preamplifiers at the

output of each antenna beam channel, the received signal samples in the absence

of interference are modeled by

yi = e (es'•s) + n. i = 1,2,...,m (1)

where yi refer to the complex output of ith antenna beam channel; AS,oSOs,•cs are

the amplitude, phase, azimuth, and elevation of the target signal; Gi(. is the

antenna patterns of the i th antenna beam which may be complex in general; ni

represents zero mean Gaussian noise samples due to the mixer preamplifiers whose

real and imaginary parts have variance a2. As shown by Hofstetter and DeLong [4],

this model arises when the received signal is preprocessed by a matched filter.

It can also be used to describe the case in which a simple on-off pulse is trans-

mitted and preprocessed by a filter whose bandwidth is at least equal to the

reciprocal of the rise time.

If interference is present that overlaps the target signal return, the

received signal samples can be written as

• J(PS J(Pl
Yi AS e Gi(OS,as) + A, e Gi(eI, a,) + ri 1 1,2 ,m

(2)
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where now AI, ýIs' oI, 1 represent the amplitude, phase, azimuth, and elevation

angles of the interference signal. In addition to describing the effects of

multipath in an L-band radar the model also arises in the design of the Discrete

Address Beacon System (DABS) that is to be used to perform the surveillance

function in the next generation Air Traffic Control (ATC) system [5]. nuring the

transition from the present Air Traffic Control Radar Beacon System (ATCRBS) to

a completely DABS operation, ATCRBS will represent a source of interference to

DABS. Since direction finding is performed at L-band using simple on-off pulses,

the received signal samples will be described by (2). We note that in this case,

however, that the downlink carrier frequency is known only to within + 3 MHz.

Therefore, the preprossing filter cannot be exactly matched to the downlink

signal and a slight reduction in signal-to-noise raiio (SNR) must be tolerated.

Using (1) and (2) we can formulate the following hypothesis test for the

detection of interference:

H0: interference absent

Yi AS e G1 S(6 ,cS) + ni,i,...m (3)

H1: interference present

JCqS JýOl

Yi= AS e Gi(,S,cS) + A, e Gi(0IaI) + ni i=l,...m (4)

The solution to this hypothesis testing problem can be obtained from application

of the Generalized Likelihood Ratio criterion [3]. First, we form the ratio

4
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A()=max p (y] Ho ga)()

where we have used the notation y =(yl 'Y2"".Ym) to denote the complex data

vector and B = (A,q',e,a) to denote the unknown parameter vector, and where p(yjHk)

denotes the probability density function of y under either hypothesis H0 or H1.

Once A(y) is computed, interference is declared present if and only if A(y) > V'.

Since the noise components are Gaussian random variables, then under the

null hypothesis, we can write

2)-..m/2 m i 211
max p(ax (22)"mma exp . - AS e G (ecsas)I:S~ ~ ALs')'s• max~ "s (Ssl

As99sesas i=l I j
(6)

-Hofstetter and DeLong [4) have shown that if both and as are unknown then for

reasonable antenna patterns, Gi(ScSx), the maximization in (6) can be solved if

there are 3 linearly independent antenna beams. If only es is unknown or if GY(es)

is a fan beam in elevation, then they shown that (6) can be solved if there are

2 linearly independent antenna beams. With these restrictions on m, namely

m=2 or 3, depending on whether e, and/or aS are unknown, Hofstetter and DeLong

show that (6) is maximized at the parameter values A,qP,e and/or a where

In ,, ,,

__G (ea) Re(yie'J-)
_ _ _ _ _ _(7)

m

i=l
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%.I

S••.: • (8)

G1(Oa) I Re(yi e G G2 (e,a) Re(y 2 e )
,AA~ A ~ A *(9)-j^^ G3 (Oa) -e( P(G2 (0'a) Re(y 2 ee) Re

and hence A,q',o,a denote the maximum likelihood estimates of A,(p,6,a.

It is also shown that the maximum value of the density function is

m 12

max P(Y-H0,BS) = (2r 2)-m/2 exp - 2 _I Yi (10)
ý-Sil

Under the alternate hypothesis the density function is

2) m/2 [P(ylHlS1 Ij5 j1 ) =(27r a exp -- T I l "y AS e GaI(e•,•s)

AI e Gi(, (11)

When both eS and as are unknown, we require m = 3 and note that there are 6

measurements and 6 unknown parameters. If only es is unknown, we require m = 2

and then there are 4 measurements and 4 unknown parameters. In either case,

the maximum value of the density is (271 a2)-m/2 and it is achieved by picking the

parameter estima•tes to solve the equations

6



As eS G,(eSaS) + 1, e G1(61, 1 00 y, i 1,2, or 3

(12)

Using these facts, the Generalized Likelihood Ratio, (5), becomes

/Mt mA(X_) =ex[.L(I py1 - 2) (13)

hence, we declare interference present (hypothesis H1 ) if and only if

m m

1=1i iil
ly-1,~~~• =" 1 >x(4

In the application to the ATC problem only the aircraft azimuth can be

estimated since elevation fan beams are used to prnvide surveillance for high

and low altitude aircraft. In this case, two antenna beanms having azimuth

directionality would be used that would take the form of a sum (even) and dif-

ference (odd) monopulse configuration. Letting yl, y2 denote the outputs of the

sum and difference beams respectively, then interference will be declared

present if and only if

2 2 _ly2 2+ 2 > (15)IYI +i 
ii i 

l X

Following [4], we recognize that an equivalent test to (15) is to declare

interference absent if, and only if,

"< " + j 121< X (



It is interesting to note that in the test for signal plus noise versus noise

alone, which was the problem that was considered in [4], the two quantities in

(16) are added rather than subtracted. Furthermore, the maximum likelihood

azimuth estimate is related to the phase difference between the signals yl +j Y2.

Since these signals are readily formed at RF, it is possible to obtain the

detection statistic, interference statistic, and azimuth estimate from the same

RF hardware configuration. In the remainder of this paper we shall limit our

attention only to the case of a two beam monopulse radar, hence we assume that I..

the antenna patterns depend only on one angular variable. For convenience we

shall deal with the estimate of azimuth, but it is obvious that the results

apply directly to a monopulse system that tracks in elevation.
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III. DERIVATION OF THE EXACT PDF

Since our basic motivation for undertaking this problem lies in . MIC

context, we can assume that m = 2 and focus our attention on (16) .i-d attempt to

analyze the performance of the detector by computing the false alarm and detec-

tion probabilities. Therefore, we shall all attempt to compute the probability

density function (pdf) of the detection statistic

=ly + j y2. - lyI - i y2 1 (17)

We begin the analysis by defining new random variables

Y+ :Yl +-jY2

=As[GI(Bs G2(O PS) [G %jOs

A SEi GAeG)I e 5  + AJ1G1( 1) j G2 (0I) el] + n+-j n2

= As e q' Gl(S) ( AI eY Gl(el) ] jA A s G2 (6S) + A, e G2(eI) +

(18)

where we have defined new noise variables

nI n (19)
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2
which we note are zero mean, independent complex Gaussian with variance 4a.

Therefore, y+ are also independent complex Gaussian random variables with

variance 4a and means

+ AS e GI(e) + AIe GI(eI)t - [AS ej(S G2(OS) +AI e G2(e•

(20)

Therefore the random variables

= IY+1 (21)

are independent Rician random variables of order 2, [6], and their probability

density functions (pdf) are therefore

U d+d

Pk+(u) =-- exp -__T (22)

where I (.) is the modified Bessel Function of the first kind of order zero,

and where

d I2 
(23)

Using the definitions in (17), (18), and (21) we see that the detection statistic

is given by

10



=1Y+1 -!Y-I

= - (24)

hence its pdf is

* p (u) =f J P(u v) pt (v) dv (25)

Then using (22) in (25) it can be shown that the exact form for this pdf is

p~,u 7 x ~ f(x,u/j~ dx (26)

where

f~xy) (x2  y) exp-(2 + d d)]I 0 [d+(x + y)] I0Ed (x - y)]

(X cr(27)

Since it is difficult, if not impossible, to evaluate (26) analytically or

numerically, we have found it more appropriate to approximate the Rician variate

by the Gaussian density. In Fig. 1 we have shown curves obtained from 7

that show the Rician pdf for several values of the parameter d,/20 . From the

figure it appears that for values of d+/ J~a greater than 3 the Gaussian approxi-

mation is quite good. In the Appendix we perform a detailed error analysis

that shows that except for 2.5% of the area under the lower tai,, the Riclan

pdf is well approximated by the Gaussian density provided
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Therefore we can write (22) as

Z+u) 41T Y exp[,Ž4-a 2j . (29)

From (24) the detection statistic is t t+ - L-, so that z, is also Gaussian

Lbus. With mean d+ T n aiac herefore

[ u - (d+. - d)?
pk(u) exp, 8- (30)

witere d. are given by (23) and (20).

In the next section we shall compute the false alarm and detection prob-

abilities aind hence develop the criteria needed to evaluate the performance of

the detector.

13



IV. FALSE ALARM AND PIZTECTION PROBABILITIES

Since the detection statistic can be well approximated by a Gaussian r;,ndom

variable, it is a straightforward problem to calculate the false alarm and de-

tection probabilities.

a) False Alarm Probability

In this case, the interfering signal is absent hence AI = 0.

Furthermore, the target of interest lies within the mainbeam of the antenna and

it can therefore be assumed that Gi(OS) is real. Using these facts in (20),

(23) becomes

+d 2A 2 G'(eS) + G 2(es)I (31)

Therefore the mean value of the detection statistic is

d - d =0 . (32)

A false alarm is made whenever 2jl > x, hence the false alarm probability is

A exp - du

=2 erf(•-) (33)

14



where

This shows thai. he detection threshold can be set once the level of the

backgrcour. noise is known.

To verify that the Gaussian approximation is indeed valid in this case, we

see from (28) that it is sufficient to have

A S I(6S) + G

10 (35)

The detection signal-to-noise ratio is A~ G (eS)/2a2  and since this quantity is

&~ 1.

at least 20 dB in-the ATC context we see that (35) will easily be satisfied.

b) Detection Probability

In this case, we detect interference when jzj > x, hence if the

Gaussian approximation is valid

__[ u- (d -d.)]2

= de + erfr] (36)

If we desire a false alarm probability PFA' then we solve

-FA 2 erf(XFA) (37)

15
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for XFA. Then setting the threshold according to

2c XFA (38)

we see that the detection probability is

P - erf(FA " + erf(FA + d2- (39)

We have yet to Yerify the validity of the Gaussian approximation in this

case, but this requires the evaluation of (23). We shall consider this point

in detail in the next section. At that time, we shall consider specific inter-

ference cases of interest and carry out the evaluation of the receiver performance

in detail.

16
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V. RECEIVER PERFORMANCE

In many cases of practical interest the antenna patterns will be complex at

least in a region beyond the near-in sidelobes. Since the interference can

originate from any azimuth, we make the complex dependence clear by writing

Gi(ei) = Aj(ei) exp[j ýi(ej)] (40)

Substituting (40) into (20) and using the fact that Gi~es) is real we can shown

after tedious but straightforward manipulations that

di 2 2es + ,~e5I p2 A' + 2 A1 A2 sin(ýp1 - 21

77 1

cos~oc +ip (41)

where

p = A I/As (42a)

II

vtan-1 [G 2(e S)/G (6 S)] ,(42b)

= tan- ii sin~ 1 ± A2  (42c)
ACos~p sin,

17
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Unfortunately, there are too many parameters involved in these equations to

obtain any physical "nsight into the performince of the detector in the general

case. We have had to resort to using a simclation to evaluate this general case.

We can obtain some useful analytical resuits by limiting our inter?st to real

antenna patterns. This will be valid for mainbeam interference and also for

interference located at the near-in sidelobes. Therefore, we assume that G i(A )

are real. In this case, (41) becomes

A• S2- G + G + p+ GG(ee(4+

A1 11/2 12 2 1/

where

G l(eS ) G2(Od)] (44)

tan-l G(e5s) G( 1) (44)

+Gl(eS) G2(e1)J

It will be useful to use the notion of the monopulse function which is defined

as

G 2(e) 
;E(e) - e)(45)

G 1 .._-

In most practical monopulse systems, the monopulse function is linear over the

extent of the main beam. Since the target of interest will always be within

the mainbeam then

18



E(eS) k OS (46)

where e, is the 3 dB beamwidth and k is a standard parameter that arises in the

analysis of monopulse system.;. Typically, 1 < k < 2 with k - 1.5 being a reason-

able value [8].. Whereas, the target can always be assumed to lie within the

mainbeam, the interference signal can originate from the mainbeam or from a side-

lobe. Howe.jer, it is convenient to define an equivalent interference azimuth,

6 L as

-- -- E(ei)/k (47)

OB

We note that ae, when e, is within the mainbeam of the antenna. In Fig. 2a

we have plotted 0 1 vs e, using a typical monopulse function derived for a 40

beamwidth antenna with -20 dB sidelobes, where errors in the amplitude and ohas;

tapers render the antenna pattern complex. Therefore, the results can be expected

to give some indication of performance even in the more general case. Assuming

0 1 is uniformly distributed in (-7r,Tr), Fig. 2b gives the probability distribution

function of 6I. This shows that 0I will lie within ± 2 beamwidths most of the

time and hence the cases of sidelobe and mainbeam interference can be treated

simultaneously.

Using (46) we can write E(eI) = k ei/eB, and then absorb OB into our

definition of 0 so that all of the azimuth variables can be expressed in 3 dB

beamwidths. Using these relations (42) and (43) can be written as

d2 ~ 22 2\ -2 /l ' 1/2
±~~~ G( 5 (lk 2 0 + Py-~ .- 7 +% -~z-. co'I) Z

(48)

19
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InlI
where

'_ [ kr~~es. - ) .eIdI.
tan= (49)
tal (6 -nl

p2

• B-- to.'I[I~~ + k2 es 6l(• .. .,
0S 0I

A1 G10~1)(
P0  AI G,(eI) 50)

The quantity po represents the interference-to-signal ratio as measured at the

output of the antenna terminals. We note that by using (47) we are able to

derive an expression which describes the case of mainbeam and sidelobe inter-

forence simultaneously.

a) Basic Properties of the Detector

Using the above expression we can obtain some interesting properties

of the interference detector. First we note that if the relative phase between

the two signals, (o, is 0 or 1T, then d+ = d and from (39) we see that the detec-

tion probability reduces to the false alarm probability. This is an unfortunate

property since McAulay [1] has shown that interference causes the worst azimuth

errors at the out-of-phase condition. Secondly, we note that if 6S = eI = eI then

= 0 and d+ = d_. Again, the detection probability is negligible. This is a

reasonable behavior for the detector to exhibit since if targets are at the

same azimuth, they will not cause any azimuthal error except that due to fading [1].

Another interesting analytical result can be obtained in those cases where

the interference has been completely overpowered by the target. In this case,

Po << 1 and we can neglect the secc,^d term in (48) and use the Binomial Expansion

to take the square root. This gives

21



d A5 G1(e5) (1 + k2 b) 1  [ (+ k \iI cos(p 8)
L \ k0/ (51) _

Using (49) it can then be shown that

d - d_ AT Gl(keI k(S - oI)+ - sinp (52)
c (1 + k2  s)/2

This result shows that when the target completely overpowers the interferer, the

ability of the receiver to detect interference depends on the interference-to-

noise ratio (INR). At first glance this is a somewhat puzzling result since

McAulay [1] has shown that the azimuth accuracy depends on the signal-to-inter-

ference ratio (SIR) such that if the SIR is large, the azimuth estimate is un-

affected by._interference. Equation (52) indicates that if the INR is also large

then the interference detector would ring. From a data editing point of view

this would not be a desirable property. However, the detector is not really

testing for the presence of interference since there is no inherent distinction

between interference and target. Rather it is te.ting for the presence of more

thdn one signal. If the SIR is very small, then (48) reduces to

d+- d AS Gl(es) k(e, - as)+2 a 2 ' -2 1 s i n ýo .(5 3 ) :
CY(1 + k2 )/

In this case, a large azimuth error would result since the azimuth of the strong

interferer would be estimated. However, this situation would be flagged by the

detector provided the target SNR were large enough. Therefore the detector

22



performance in these extreme cases is intuitively satisfying, although the

"results indicate that some provision may have to be made for reducing the de-

tections due to low level interference. We will discuss this point further in

a later section.

To obtain a more complete understanding of the detector perfQrmance we

need to evaluate (48) and (49) and use these with (39) and (37) to obtain the

detection and false alarm probabilities. The results we obtain are based on thk

Gaussian approximation to The Rician densities. From (28) we see that this wi'l

be a reasonable assury.tior; prov;ded d2/2a2 = 10. From (48) we see that the

smallest value of d4 occurs when 'o -0= 7r. Then

2- 2 2'

E, requiring that the second in.equality hold, we have a conservative but sufficient

condition to guarantee that (28) will hold. Therefore, for a post-detection SNR

greater than 20 dB, tnis inequality will be satisfied for all signal-to-inter-

ference ratios except those in the region from -3 dB to + 3 dB. Since this is

a conservative assumption and since we would not expect the detection probability

to depend on the tails of the pdf, it is reasonable to expect that the Gaussian

approxination will adequately describe the ptrformance over an even smaller

range of SIR values.

Over the duration of any one DABS reply, the parameters As, Ai, as$ eI are

fixed. For mainbeam multipath,cp will also be constant from chip to chip. For

- ~-the case of ATCRBS interference p will change randomly from chip to chip, and

in fact may also change between samples within a chip due to the frequency offset

23



that can be expected between the DABS and ATCRBS transponders. In addition, we

have found that the dependence on q' is crucial to the understanding of the data

editing concept. Therefore, we have chosen to evaluate the detection probability

as a function of0p.

b) Performance Based on a Single Sample

We have evaluated the performance of the receiver for some cases

of interest. Our baic parameter values were taken to be the following:

6S =0 (target on boresight)

A~ G (0)SNR -- 20 dB2 0

6= 0.5 (interference at 3 dB point) (55)

k=l.5

Gl(e) 1 1 - 1.17 2

All we need do now is specify a false alarm probability, compute XFA from (37),

compute d+/2o from (48), (29) and use this to compute the detection probability

in (39). In Figure 3 we have plotted the normalized mean value of the detection

statistic (d+ - d_)/2a for several values of the ISR.

Since in the DABS direction finding (DF) problem there will be many bits

available for generating the azimuth estimate, a higher false alarm rate can be

tolerated in order to correctly detect interference samples. Therefore, we

allowed a false alarm rate of 2 samples in 100, PFA 0.02, and then computed the

detection probability for various values of the ISR.

24
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Fig. 3. Mean value of the detection statistic.
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In Figure 4 we have plotted the miss probability PM(HO) = 1 - (¢) as a function

of the relative phase. As we expected, the detector misses interference with

probability one when the in-phase and out-of-phase conditions exist. In the case

of ATCRBS interference the relative phase is independent and uniformly distributed

from bit to bit. Then a measure of performance of the detector is the average

miss probability

l PM(9) dy (56)

In Figure 4 we have indicated the average miss probability as a function of ISR

for the 0.02 false alarm probability case.

c) The Effect of Frequency Offset

The preceding results give the detection performance when a

decision must be made on the basis of a single sample. In the DABS context,

there will be several samples available per chip for interference detection and

direction finding. Unfortunately, if the interference is multipath, the phase

will not change significantly from sample to sample, or even from reply-to reply,

hence the detector's performance will be essentially the same as that described

in the last section. Hence there may be situations when azimuthal multipath

will be present, but will not be detected by the interference flag.

In the case of ATCRBS interference, however, there will be a frequency

offset between the DABS and ATCRBS transponders that can cause the instantaneous

phase to change from sample to sample. For example, if Af denotes the frequency

difference between the two transponders and if fs represents the rate at which

the DABS waveform is to be sampled, tnen from sample to sample the phase increases
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by 2n Lf/f /s Since the sampling is to be done at a 10 MHz rate, then a 0.5 MHz

frequency offset* would lead to a 0.31 radian phase shift. From Figure 4 we see

that the detector misses the interference when the phase is within a 1 radian

interval about 0 or ,. Therefore, with two or three additional samples we can

expect the detector's performance to improve significantly. We can make these

statements quantitative by considering the detection of interference using N

samples per chip. Our strategy is to declare interference present if the detection

threshold is crossed for at least one of the N samples. Then to yield a miss, the

detector must fail to detect on every sample. If p denotes the relative phase

at the time of the first sample, then at the nth sample it is o + (n-i) Lo. The

single sample miss probability at this phase is denoted PMM [9 + (n-1) •o]. Then

the miss probability after N samples is

N

PMN (N()) = 17 I PMI [P + (n-l) AL] (57)

The product rule applies because the noise samples are independent from sample

to sample. If we let T denote the chip width and fs the sampling rate, then the

number of samples per chip is N = fsT, and the phase shift is Lp = 27 Lf/f For

the DABS application we could expect T = 0.483 ýisec and fs = 10 MHz. Therefore

3 samples per chip represents a conservative evaluation. Using this value for

N, we plot PMN as a function of frequency offset for several values of the ISR
N

and an 0.02 false alarm rate. This is shown in Figure 5 and demonstrates the

significant improvement in detection performance that can be expected as a result

*A distribution of frequency offset has been measured by G. Colby and E. Crocker
and is documented in reference L9].
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of the instantaneous phase change from sample to sample that results f,-om the

frequency offsets between a DABS and an ATCRBS transponder.
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VI. CONCLUSIONS

The analysis of the performance of the maximum likelihood interference

detector was greatly simplified by recognizing that the interference statistic

could be well-approximated by a Gaussian random variable. A conservative condition

on when the approximation was valid was found. For example, at a 20 dB SNR, the

SIR would have to be within + 2 dB for the approximation not to be valid.

False alarm and detection probabilities were calculated in detail for the

cases in which the antenna patterns were real. Although formulae for the complex

antenna pattern case were derived, it was not possible to obtain simple analy-

tically useful results from them. We then restricted our attention to the case

of real antenna patterns and obtained expressions from which it was possible to

draw some useful conclusions. It was found that when the relative phase was 0

or 7, the receiver would fail to detect the interference with probability one.

It was also noted that the detectability improved as the azimuthal separation of

the two signal sources increased. Furthermore, it was found that detectability

depended on the signal-to-noise ratio of the weaker of the two signals. If this

SNR was large enough, good detection was obtained no matter how large the other

signal became.

Specific results for a mainbeam interferer were given and it was found that

if only a single sample were used for detection that the average detection prob-

ability was approximately 0.8 for an 0.02 false alarm rate. This poor perform-

ance was due to the fact that misses were guaranteed when the phase differences

were 0 or n.
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In practice there will be several samples per chip available for inter-

ference detection which can result in meaningful improvements in performance

provided there is an instantaneous phase change from sample to sample. Un-

fortunately, if the interference is due to multipath, there will be no signifi-

cant change in phase for several seconds duration, hence multiple samples cannot

be expected tc improve the performance in this case. When the interference is

due to ATCRBS, however, the probable frequency offset between the DABS and ATCRBS

Stransponders will cause the phase to change from sample to sample. We.have ex-

amined this case in detail and found that significant improvements in target

detection performance can be expected.
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APPENDIX

DERIVATION OF THE APPROXIMATE PDF

Let us focus our attention on the Rician pdf

p(u) = exp u I d. (A-i)
a 2 -

The well-known asymptotic approximation for the I C) Bessel Function is

(u d) 2 u d -1/2 d)u d .
I o \ 2 ) e x p - -2 > > ( A - 2 ) ! i ,

This is quite an accurate approximation for ud/a2 > 3. Then the pdf becomes

p (U) (T u/ 1 x 12 (A-3)

We are most interested in the values of u about d. Let us write

u d + 6 u (A-4)

then

6 1 2 p1 " u'2

p(u) (1 + ) 2 exp( -

exe - (A--;

F, 22
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Therefore, u is well approximated by a Gaussian random variable with mean d and

variance 2 a provided ud/ > = 3 and u = I6ut << 1. When the Gaussian approxi-2 d
mation is valid, 95% of the pdf lies between the 2-sigma limits. Therefore, if

we require that

1 2a < (A-6)

then ½1 I6uj < 1 "most of the time." As a practical matter we take

a< 1 (A-7)
< 10

as the criterion for which we can neglect first and higher order terms of 6u

that appear in (A-5). We must yet determine whether or not (A-7) is suf'lcient

to validate the io () approximation that led to (A-5) in the first place.

However, u = d - 2a at least 97.5% of the time, hence

u d d 2I _ l 0 2- 2.7 (A-8)

C2  a ý10'

Therefore, the condition

d2 >1 (-9)

G2 =

is sufficient to guarantee that the Rician pdf for u will be well approximated

by the Gaussian density of mean d and variance (T.
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